Lyman- α forest in three dimensions: Measuring the Baryonic Acoustic Oscillations

Anže Slosar, BNL

Physics Department Colloquium, 3/19/13

Universe's timeline

Cosmic pizza

However, we also have:

Smallest component of Universe:

- Baryons: Stuff we see that makes up the world around us: electrons, protons, neutrons, . . .
- ► Stuff we know & love

- Dark Matter:
 - ► Cold, pressureless, non-interacting stuff
 - ► Collapses under its own gravity
 - Without it, Universe wouldn't have time to form galaxies, stars, planets and us
- Dark Energy:
 - Drives accelerated expansion of the Universe biggest surprise of the last decade

The Dark Sector

- Macroscopic behaviour well understood: we have many independent detections/confirmations of both dark components
- Microscopic understanding lacking:
 - ► How the dark sector fits with the standard model of particle physics?
 - Does gravity obey general relativity on all scales and at all energies?
 - How did it all begin? Is inflation an accurate description of the early universe?
- ▶ Dark Matter can be one of many postulated stable, weakly interacting particles LHC might help solve the puzzle
- ▶ Dark Energy much more mysterious. It behaves like energy density of a vacuum, but its energy scale does not relate to anything we know.

Measuring the expansion history of the Universe

- ► Many of these questions can be answered by measuring the expansion history of the Universe.
- One wants to measure distance or Hubble parameter as a function of redshift.
- ► How does this work?

Redshift

We often talk of redshift as a measure of "distance" in the Universe:

$$1+z=\frac{\lambda_o}{\lambda_e}$$

- It obviously doesn't have the right units to be a "distance"
- Redshift is really a measure of how much the Universe has expanded since light was emitted:

$$a(z)=\frac{1}{1+z}$$

- As the Universe expands, the wavelength of propagating light expands together with it.
- Hubble parameter measures the logarithmic expansion rate:

$$H(a) = \frac{\text{velocity}}{\text{distance}} = \frac{d_{\text{comoving}}\dot{a}}{d_{\text{comoving}}a} = \frac{\dot{a}}{a}$$

Distance

One deals with Friedman-Robertson-Walker metric:

$$ds^2=dt^2-a(t)^2(dr^2+S(r)^2d\Omega^2)$$

- ► There is no clear definition of distance, but one can *define* distances operationally
- Luminosity distance is distance inferred by looking at the brightness of an object of known luminosity
- Angular diameter distance is distance by looking at the angular size of an object of known size.
- All distance are related to light travel, for which $ds^2 = d\Omega^2 = 0$, so

$$r = \int \frac{dt}{a} = \int \frac{dt}{ada} = \int \frac{a}{\dot{a}} dz = \int \frac{dz}{H(z)}$$

So far geometry, now dynamics

► FRW metric is the most general space-time metric consistent with spatial homogeneity and isotropy:

$$ds^2 = dt^2 - a(t)^2 (dr^2 + S(r)^2 d\Omega^2)$$

Add Einstein field equations

$$G_{\mu\nu} + g_{\mu\nu}\Lambda = 8\pi T_{\mu\nu}$$

and get the Friedman equation:

$$H^{2}(a) = \frac{\dot{a}^{2}}{a^{2}} = H_{0}\sqrt{\Omega_{r}a^{-4} + \Omega_{m}a^{-3} + \Omega_{k}a^{-2} + \Omega_{\lambda}(z)}$$
 (1)

So, measuring either H(z) as a function of z or measuring distances $D(\int H^{-1}(z)dz)$ one can learn about make up of the universe and its constituents

Hubble diagram from Supernovae

$Judging\ distances$

I see stuff.

$Judging\ distances$

(Ordering by Urs Wehrli.)

What is BAO?

- Before recombination (i.e. formation of hydrogen atoms), primordial plasma supports acoustic waves
- Sound waves travel through Universe as long as it is in primordial plasma state
- The characteristic scale is imprinted as a small bump into the correlation properties of dark matter
- It acts as a standard ruler, allowing very robust measurements of the expansion history of the universe.

What is BAO?

BAO in Cosmic Microwave Background

BAO in CMASS galaxies

BAO is a statical ruler

BAO is a statical ruler

Measuring Density fields

- Careful might have noticed a leap from dark matter density fluctuations to galaxies
- ► There are very strong arguments based on locality. Assuming the galaxy-formation process is a stochastic and arbitrarily complicated, but local process

$$\delta_{\mathbf{g}}(\mathbf{r}) = F(\delta_{\mathrm{dm}}(\mathbf{r})),$$
 (2)

then on large* scales

$$P_g(k) = b^2 P_{dm}(k) + \text{const.}$$
 (3)

- This is true for any local process.
- lacktriangledown * larger than locality scales and such that $\delta_{f g}(k)\ll 1$, $\delta_{
 m dm}(k)\ll 1$

Measuring Density fields

- To measure BAO, one needs a tracer of dark matter
- Lyman-α forest pretty unique in probing redhift 2-3 universe
- Volume probed is very, very large
- Systematics very different to galaxy surveys
- At z < 2 limited by forest moving into UV
- At z > 3.5 limited by faintness and number-density of quasars

Measuring Density fields

What are quasars

- ► Brightest things in the Universe
- ▶ Powered by energetic active galactic nuclei can see them *very* far
- ► Featureless spectrum with a few broad emissions
- Understanding of underlying physics not important for our application.

Lyman- α forest

Neutral hydrogen absorbs light from distant quasars blue-ward of Lyman- α emission.

Lyman- α forest

Neutral hydrogen absorbs light from distant quasars blue-ward of Lyman- α emission.

BOSS spectra

3D sampling of the universe

Baryon Oscillation Spectroscopic Survey (BOSS)

- BOSS is one of 4 experiments making up SDSS3.
- ▶ Uses 2.5m SDSS telescope
- Large etendue
- ► A 1000 fiber spectrograph
- ▶ Medium resolution: $R \sim 2000$
- ► Wavelength: 360nm (UV) 1000 nm (IR)

Baryon Oscillation Spectroscopic Survey (BOSS)

- ▶ Will get spectra of
 - ▶ 1 million LRG (z < 0.7)
 - ▶ 160,000 QSOs with usable forest
- ► Survey over half done, over 100,000 high-z QSOs in hand.
- Primary science goal is to measure dark energy through Baryonic Acoustic Oscillations.

How BOSS works?

BOSS spectra

BAO measurements with galaxies

- ▶ Measuring BAO at low redshift (z < 1.0) became a standard lore of cosmology.
- You can have broadband contaminants that don't affect your measurement

History of BOSS Lyman- α

- ▶ Traditionally, Lyman- α forest has been used on a quasar by quasar basis: measuring 1D power spectra
- Nobody has done 3D Lyman-α to cosmological scales before BOSS
- ► We published first proof-of-concept paper in 2011
- ► Two papers with Lyman- α forest BAO appearte recently:
 - Busca et al paper: arXiv:1211.2616
 - ► Slosar et al apper: arXiv:1301.3459

The 2011 analysis: ξ push

- Clear detection of correlations with no significant contamination
- The measured correlation function is distorted due to continuum fitting
- Analysis is harder than galaxy analysis:
 - Redshift-space distortions always matter
 - Redshift-evolution does matter

Data Sample

- We all used DR9 based Value Added Catalog
- Quasars visually inspected
- DLAs, BAL identified
- ▶ 60,639 QSOs in 2.1 < *z* < 3.5
- ▶ 58,229 quasars after cuts
- 15 sets of full-dataset synthetic data

Data flow Fit continuum model: for Take data and mean quasar Measure 1D perform basic continuum, mean data cuts: DLAs. power-spectrum absorption, quasar BALs, sky lines. and further refine amplitudes and a the amplitudes. Correct for linear modulation noise estimates. of amplitude inside the forest. Measured the 3D Combine per correlation. Use plate mea-Estimate BAO the measured 1D surements and power spectrum parameters estimate error for optimal covariance matrix weighting. Infer cosmology

Fitting bump

We did a very careful job fitting the BAO position. There is an app for it: arXiv:1301.3456.

There were a couple of lessons learned:

- There is no clean way to de-couple peak from the rest
- There is no clean way to measure information just from the BAO

Our basic model for the data is:

$$\xi_{
m observed}(\Delta \log \lambda, s, z) = \xi_{
m cosmo}(r_{\parallel}, r_{\perp}, \alpha_{\parallel}, \alpha_{\perp})(1 + B_{\it m}(r, \mu, z)) + B_{\it a}(r, \mu, z)$$

Occasionally we also use $\alpha_{\rm iso} = \alpha_{\perp} = \alpha_{\parallel}$.

Bumps

Isotropic fitting: synthetic data

Isotropic fitting: real data 30 25 20° 15 10 5 0.8 0.9

 $\alpha_{\rm iso}$

Comparing with bootstrap

- ▶ Bootstrap does seem to match the M3 matrix...
- ▶ Note that we are really comparing apples and smurfs here: what is the effective prior of the bootstrap analysis?

 $Anisotropic \ fit$ with data

Cosmology fits

Distance plot

A cunning plot:

- Error-bars are distance errors
- bow-ties are Hubble-parameter measurements at central value: i.e. slopes
- Slanting of upper and lower errorbar is the correlations between parallel and perpendicular direction measurement.

Hubble's parameter plot

Cosmology fits

Cosmology fits

Conclusions

- We measure the BAO in the Lyman- α forest.
- ▶ The significance is $3-5\sigma$
- consistent with ΛCDM, $100 \times (\alpha_{\rm iso} 1) = \\ -1.6^{+2.0}_{-2.0} \, {}^{+4.3}_{-4.1} \, {}^{+7.4}_{-6.8} \, ({\rm stat.}) \, \pm 1.0 \, ({\rm syst.})$
- Many other projects going on with Lyman-α forest in BOSS: cross-correlations, 1D power spectra, Lyman-β forest, ...
- ▶ Very much remains to be done....

